
Received April 28, 2020, accepted May 5, 2020, date of publication May 22, 2020, date of current version June 5, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2996630

Online Multi-Resource Social Welfare
Maximization for Non-Preemptive Jobs
CHAOQUN YOU 1, (Member, IEEE), CHENG REN 2, AND LEMIN LI1
1The Key Laboratory of Optical Fiber Sensing and Communications, University of Electronic Science and Technology of China, Chengdu 611731, China
2School of Electrical Engineering and Information, Southwest Petroleum University, Chengdu 610500, China

Corresponding author: Chaoqun You (chaoqunyou@gmail.com)

This work was supported in part by the NSFC Fund under Grant 61671130, in part by the SWPU of Science and Technology Higher
Learning Innovation Ability Enhancement, China under Grant 2019CXTD06, and in part by the Collaboration Project of University and
Nanchong, China under Grant 19SXHZ0018.

ABSTRACT Multi-resource allocation is ubiquitous in datacenters. Usually, the datacenter scheduler
associates each user with a utility function and then allocates multiple resources so as to maximize the
social welfare, which is the sum of the utilities of the users. We refer to this problem as the Social Welfare
Maximization (SWM) problem. Meanwhile, given the dynamic nature of datacenters, the scheduler is
supposed to support non-preemptive scheduling, where jobs of users that are being processed would not
be interrupted by the reconfiguration of resources. Non-preemptive solutions to SWM incorporating pricing
considerations include dynamic pricing and bidding/auctions. However, both strategies are quite complex.
Meanwhile, traditional Lagrange solutions to SWM does not support non-preemptive job scheduling. In
this paper, we propose Adaptive Dominant Resource Fairness (ADRF), that provides near-optimal social
welfare where each user is assigned an α-fair utility function and when 1 < α ≤ 2. Based on ADRF,
we propose Cumulative ADRF (C-ADRF), an online algorithm that greedily assigns the idle resources to
the current poorest user, making it quite simple to schedule jobs from users non-preemptively. Compared
with the polynomial or exponential form of time complexities in other SWM solutions, C-ADRF requires
only O(logN ) work, where N is the number of users. Extensive simulations using Google and Facebook
cluster-data traces show an impressive behavior of C-ADRF in providing social welfare, only 3% and 2%
away from the optimal social welfare, respectively.

INDEX TERMS Multi-resource allocation, fairness, social welfare, online scheduling, non-preemption.

I. INTRODUCTION
The problem of multi-resource allocation in a cloud data-
center, which is naturally constrained in terms of CPU time,
memory, communication links, and other resources, is of
broad practical and theoretical interest. As the datacenter
workloads surge, providing fine-grained multi-resource allo-
cation among users, each of which submits multiple jobs,
has become increasingly important. Usually, schedulers solve
such problems by associating each user with a utility function
and then provide an allocation that maximizes the social wel-
fare, which is the sum of all users’ utilities [1]–[6]. We refer
to this allocation policy as the Social Welfare Maximization
(SWM) problem.

We consider the non-preemptive job scheduling in multi-
resource SWM. That is, once a job starts its service, its

The associate editor coordinating the review of this manuscript and

approving it for publication was Fan-Hsun Tseng .

ongoing process cannot be preempted (paused) or migrated
due to the reconfiguration of resource allocation. This is
because preemptions or migrations require storing the state
of interrupted jobs and recovering them at a later time,
which is operational costly. In general, current data-intensive
computing frameworks in datacenters, such as Hadoop Fair
Scheduler [7] and Mesos [8], do not support such migra-
tions or preemptions [9]. Instead, given the dynamic nature
of datacenters, the scheduler is required to make online deci-
sions on which job to allocate resources to only if ongoing
jobs finish and resources free up, without interfering the
existing resource configurations.

The conventional solution obtained by solving the multi-
resource SWM directly using the Lagrange method [10],
however, is a preemptive scheduler, i.e., every time a user
arrives or departures, the scheduler needs to recompute
the SWM problem, and ongoing jobs may be preempted
due to the reconfigurations of resources. More common

97920 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-3495-7305
https://orcid.org/0000-0002-3864-5336
https://orcid.org/0000-0003-2461-8377


C. You et al.: Online Multi-Resource SWM for Non-Preemptive Jobs

non-preemptive solutions incorporating pricing consider-
ations include dynamic pricing [11]–[13] and bidding/
auction [4]–[6], [14] algorithms. However, these strategies
can be quite complex [11], especially in data-intensive frame-
works in cloud datacenters.

In this paper, we propose a new multi-resource allocation
algorithm, Adaptive Dominant Resource Fairness (ADRF),
that provides near-optimal social welfare where each user is
assigned anα-fair utility function andwhen 1 < α ≤ 2. Then,
based on ADRF, we propose Cumulative Adaptive Domi-
nant Resource Fairness (C-ADRF), an online non-preemptive
scheduler that will eventually converge to ADRF.

ADRF is designed based on Dominant Resource Fairness
(DRF) [15], a compelling multi-resource fair allocation pol-
icy that is simple enough to achieve online using the well-
known progressive filling algorithm [16]. Progressive filling
greedily allocates idle resources to the user with the current
lowest resource share (i.e., the poorest user). Therefore, pro-
gressive filling is the fundamental idea to implement ADRF
online. Despite the advantages offered by progressive fill-
ing, how well can ADRF approximate to the optimal social
welfare remains unclear. In this paper, we study the upper
bound of the gap of social welfare between ADRF and SWM
and prove that when 1 < α ≤ 2, this upper bound can be
minimized.

Moreover, based on ADRF, we propose an online algo-
rithm, C-ADRF, that can eventually converge to the static
ADRF solutions to provide non-preemptive job scheduling.
As we mentioned in the last paragraph, progressive filling is
used to implement ADRF online. However, a naive applica-
tion of progressive filling to ADRF leads to the starvation of
certain users, that the user with the lowest current resource
share may not be served if its resource demand exceeds
the available resource capacities. To avoid this shortcoming,
C-ADRF is designed to cumulate freed up resources until the
idle resources could support the next job from the current
poorest user, and then to the current second poorest user, and
so on.

FIGURE 1. System model.

The outline of the system model is shown in Fig. 1 and the
contributions of this paper are four-fold:

• We propose ADRF, a multi-resource fair alloca-
tion policy that provides near-optimal social welfare.
(Section IV-C)

• We mathematically study the gap between the social
welfare ADRF provides and the optimal social welfare
in SWM. We upper bound the gap and prove that when
1 < α ≤ 2, the upper bound of the gap can be
minimized. (Section IV-D)

• We propose a greedy online scheduling algorithm,
C-ADRF, based on the progressive filling algorithm to
execute the offline ADRF in practice. C-ADRF avoids
the starvation caused by the naive application of progres-
sive filling. (Section V)

• We conduct extensive simulations using Google and
Facebook cluster-data traces. Simulation results show
that the online allocation solutions of C-ADRF per-
form well, only around 3% and 2% differences from
the optimal solutions in Google and Facebook traces,
respectively. (Section VI)

The rest of this paper is structured as follows: Section II
introduces the related work. Section III describes the system
model and the optimization objective. Section IV introduces
ADRF and mathematically describe the upper bound of the
gap between the social welfare ADRF provides and the
optimal social welfare. In Section V, we propose C-ADRF,
an online scheduler of ADRF, which provides dynamic fair
multi-resource scheduling when jobs are indivisible and
non-preemptive. We study the performance of ADRF and
C-ADRF separately in Section VI. Section VII concludes this
paper.

II. RELATED WORK
In this section, we start with the introduction of dynamic
provisioning policies for SWM (Section II-A) Next we intro-
duce the existing multi-resource fair sharing works in the
datacenter networks (Section II-B).

A. DYNAMIC PROVISIONING FOR SOCIAL
WELFARE MAXIMIZATION
Many works incorporate pricing considerations to design
online mechanisms for resource allocation so as to maxi-
mize the provider’s revenue [11], [14], [17]–[20] or social
welfare [1]–[6], [12], [13], [20]. Given the natural dynamic
requirements of job scheduling, both dynamic pricing
and bidding/auctions have been proposed as major solu-
tions in most online scheduling schemes. Dynamic pricing
schemes [11]–[13] are provider strategies to better cope with
unpredictable user demand: pricing should be leveraged to
influence demand to generate more revenue or social wel-
fare. Therefore, to implement dynamic pricing, the resource
provider needs to collect demand information and empiri-
cally predict the future demand arrivals. Bidding and auc-
tions [4]–[6], [14], [20]–[24], on the other hand, are strategies
jointly considering user-provider interactions: users can use
the resource instances only if their bids exceed the instance
price given by the provider. Although both dynamic pric-
ing and auctions/bidding can efficiently allocate resources

VOLUME 8, 2020 97921



C. You et al.: Online Multi-Resource SWM for Non-Preemptive Jobs

dynamically, their strategies can be quite complex, especially
in data-intensive frameworks in cloud computing.

Cloud datacenters, in which data-intensive computing
frameworks such as MapReduce [25], Pregel [26] and
Dryad [27] gathered, need to make scheduling decisions at
high speeds. Typical datacenter schedulers, includingHadoop
Fair Scheduler [7], YARN [28] and Mesos [8], make thou-
sands of scheduling decisions per second. Therefore, besides
dynamic pricing and bidding/auctions, a simple and efficient
online algorithm still remains an open problem. In this paper
we propose a greedy online algorithm in this paper that is easy
to implement in practice.

Meanwhile, the study of SWM to dynamically allocate a
single resource (e.g., bandwidth allocation) is widely adopted
in flow and congestion control problem [29]. For the single
resource case, the SWM problem is also referred to as the
well-known Network Utility Maximization (NUM) problem.
InNUM, each user is associatedwith a utility function and the
optimization objective is to maximize the sum of the utility
functions of all users. The α-fair utility function is used in
NUM, and the limit α → +∞ gives max-min fairness.
Max-min fairness can be easily achieved in a greedy
online manner using the well-known progressive filling algo-
rithm [16] when jobs from users can be infinitely divisible.
This method can be easily extended to the case when jobs
are indivisible and non-preemptive to be scheduled [9].
We construct a similar optimization objective but relate it
to multiple resources. Multi-resource allocation for SWM
is considered in [30], but the utility function of each user
is simple, restricting its formulation to the dominant share
of each user. Other works considering the dynamic multi-
resource allocation using max-min fairness [31]–[33], as we
claimed in Section II-A, mainly concern about the fairness
among users rather than the social welfare maximization, and
is therefore orthogonal to our work.

B. MAX-MIN FAIR ALLOCATION
Despite the extensive computing system literature on max-
min fair resource allocation, many of the existing works
limit their discussions to the allocation of a single resource
type [29], [34].Max-min fair allocation can be achieved using
the well known progressive filling algorithm [16]. Progres-
sive filling increased all users’ shares at the same rate until
the user requiring the least resources has been fully satisfied,
then the second, and so on. In other words, max-min fairness
can be achieved greedily online by always assigning idle
resources to the current user with the lowest share.

A compelling work, DRF [15], extends max-min fairness
to multiple resource types. DRF attempts to execute max-
min fairness on the dominant shares of all users. DRF can
also be achieved by the progressive filling algorithm [9].
DRF has quickly attracted significant attentions and has
been generalized to many dimensions [30]–[33], [35], [36].
However, all these consider the multi-resource fair sharing in
the cloud from a purely operational perspective. On the other
hand, [30] extends DRF from the perspective of economics.

TABLE 1. Notations.

However, this paper only considers the social welfare perfor-
mance as a simple summation of each user’s dominant share.
Reference [35] captures the trade-off between allocation fair-
ness and efficiency but their solution still does not consider
the non-preemption of jobs in online scheduling systems.
All these multi-resource fair allocation algorithms perform
poorly in the maximization of social welfare.

III. SYSTEM MODEL
In this section, we first introduce the notations that would
be used in the paper (Section III-A). Then we introduce
the formulation of SWM (Section III-B). Next we interpret
the inefficiencies of conventional solutions to SWMusing the
Lagrange method (Section III-C). Finally, we introduce the
requirement of online scheduling in practice (Section III-D).

A. MULTI-RESOURCE JOBS AND DOMINANT SHARE
In datacenter environments, users usually submit fine-grained
jobs to data-intensive computing frameworks like MapRe-
duce [25] and Spark [37], each of which requires a slice of
a server for a short amount of time that is not known to the
scheduler in advance [8].

Denote the set of users by A = {1, 2, . . . ,N } and each
user has multiple identical jobs to be assigned to the data
center, and the set of hardware resource byR, LetM = |R|.
Here the resources can be CPU, memory, storage, etc. Let
C = {c1, . . . , cM } be the resource capacity of resource r in the
datacenter. Without loss of generality, we normalize the total
availability of every resource to 1, i.e., cr = 1 for all resources
r ∈ R. Let Dir be the ratio between the demand of user i for
resource r and cr . For all users i and resources r , we denote
dir =

Dir
maxr ′ Dir ′

; we refer to these demands as normalized user
demands. For simplicity, we assume positive demands, i.e.,
dir > 0 for all user i and resource r . The reason we use the
normalized user demands is that the capacity of every single
resource is also normalized to 1. The dominant resource of
user i is the resource for which the user’s job requires the
largest dir . A user’s dominant share is defined as the fraction
of the dominant resource that the user has been allocated,
which we denote as xi. The utiltiy of a user i depends on its
dominant share xi. Meanwhile, user i is allocated dirxi frac-
tion, and we can express the capacity constraint on resource
r as follows, ∑

i∈A
dirxi ≤ 1. (1)

97922 VOLUME 8, 2020



C. You et al.: Online Multi-Resource SWM for Non-Preemptive Jobs

For example, consider a cluster with 9 CPUs and
18 GB RAM shared between two users. User 1 demands
〈1CPU, 4GB〉 per (divisible) job, and user 2 demands
〈3CPU, 1GB〉 per (divisible) job. When CPU is resource
1 and RAM is resource 2,D11 = 1/9,D12 = 2/9,D21 = 1/3
and D22 = 1/18. According to the definition of dir , we have
d11 = 1/2, d12 = 1, d21 = 1 and d22 = 1/6. In this example,
the dominant resource of user 1 is the memory as each of
its jobs demands 1/9 of the total CPU and 2/9 of the total
memory. On the other hand, the dominant resource of user 2
is CPU, as each of its jobs requires 1/3 of the total CPU and
1/18 of the total memory.

B. OPTIMIZATION OBJECTIVE
Each user derives a certain utilityU (xi) when getting the dom-
inant share xi. Since a user’s utility increases with the share
allocated, we follow the economic principle of diminishing
marginal utility and assume thatU (xi) is a strictly increasing,
concave function.

The optimization objective of this paper is to maximize the
social welfare, which is formulated as follows.

max
xi

∑
i∈A

U (xi)

s.t.
∑
i∈A

dirxi ≤ 1, ∀r ∈ R,

xi ≥ 0, ∀i ∈ A. (2)

The first constraint represents the resource capacity con-
straints, that the total allocation to all the users on a certain
resource type r should not exceed the capacity of this resource
provided by the datacenter. The second constraint means
that each user’s dominant share is larger or equal to zero.
We denote this optimization problem as the SWM problem.

In SWM, the utility function can be interpreted as imposing
different notions of fair resource allocation to users [29].
Famous forms of fairness such as proportional fairness and
max-min fairness can be unified by considering utility func-
tions of the form

U (xi) =
x1−αi

1− α
, (3)

for some α > 0. Resource allocation using the above utility
function is called α-fair. It has been shown in [29] that propor-
tional fair resource allocation is achieved when α→ 1, at this
point the utility function is equivalent to the logarithmic func-
tion, that is, U (xi) = log xi. Meanwhile, the limit α → +∞
gives DRF, which is an extension of max-min fairness from a
single resource to multiple resources.

C. INEFFICIENCY IN CONVENTIONAL SOLUTIONS
We first summarize the standard Lagrange method to solve
SWM, which will provide design motivation on the pricing
aspect of our proposed solution. We note that this method
always schedules users and jobs in a preemptive manner.

The Lagrangian of SWM is defined as follows,

L(x, h) =
∑
i∈A

U (xi)−
∑
r∈R

hr (
∑
i∈A

dirxi − 1) (4)

where hr is the Lagrange multiplier of SWM corresponding
to resource r . When SWM achieves its optimal solution,
the first derivative of the Lagrangian equals to zero. Setting
∂L(x, h)/∂xi = 0 for each i gives

U ′(xi) =
∑
r∈R

hrdir (5)

This is used to derive the Lagrange dual problem, which is
then solved to determine the optimal hr values and the cor-
responding optimal xi values. If we consider hr as the virtual
unit price of resource r , then

∑
r∈R hrdir can be interpreted

as the price of user i in consuming one job with demand
dir , r ∈ R.

To solve SWMonline using the Lagrange method, the allo-
cation xi or the Lagrange multiplier hr is based on the
demands dir , r ∈ R, of user i that currently exists in the
system. Whenever a user arrives or departs, the allocation is
recomputed. We might have to reconfigure all users to obtain
the configuration specified by the new solution. This could
include preempting jobs that are being processed and replac-
ing them by the others due to the changes in the resource
allocation decision. Jobs that are thus preempted come at
an undesirable cost when they resume computation from
where they stopped [7], [38]. Typical datacenter schedulers,
such as Hadoop Fair Scheduler [7] and Mesos [8], do not
support such expensive computations as they make thousands
of scheduling decisions per second along with user arrivals
and departures.

D. ONLINE JOB ARRIVAL AND DEPARTURE
We consider the online scenario where users and their jobs
arrive dynamically, with unknown arrival times a priori.
Conventional solutions to the SWM problem is usually in
the offline setting, where all users and jobs are available
for scheduling at the beginning. Furthermore, such offline
solutions often treat jobs preemptively: whenever a user is
added or deleted, the allocation configuration is recomputed
and users that are preempted due to the change of allocation
are unreasonable assumed to be able to resume computation
from where they stopped without any cost.

In practical dynamic datacenter environments, however,
offline solutions are neither practical nor efficient. This is
because: (1) the datacenter scheduler needs to make frequent
allocation decisions whenever a new user is added or when
resources free up. Typical datacenter schedulers, including
Hadoop Fair Scheduler [7] and Mesos [8], make thousands
of decisions per second as jobs continuously finish and their
resources need to be allocated to new jobs. Therefore, offline
solutions to SWM require recomputations of every user every
time a user is added or deleted, leading to an expensive
recomputation cost; (2) the resumption of preempted jobswill

VOLUME 8, 2020 97923



C. You et al.: Online Multi-Resource SWM for Non-Preemptive Jobs

cause a large amount of overhead; (3) datacenter jobs are non-
preemptive as they are indivisible and have to be executed as
whole entities. Therefore, in this paper, we propose a greedy
online algorithm such that it is fairly simple and efficient to
schedule datacenter jobs in practice.

IV. ADAPTIVE DOMINANT RESOURCE FAIRNESS
In this section, we first provide an overview of the algorithm
we propose, Adaptive Dominant Resource Fairness, ADRF.
Then it is necessary to review the definition of DRF and its
general form GW-DRF. Next we introduce the method to
determine the particular form that can provide near-optimal
social welfare in GW-DRF and name it ADRF. At last we
study the social welfare difference betweenADRF and SWM,
mathematically describing the upper bound of the gap.

A. OVERVIEW
ADRF provides an near-optimal solution to SWM when
1 < α ≤ 2, where each user is assigned an α-fair utility func-
tion. The design process can be clearer using the flowchart
shown in Fig. 2. Inspired by the Lagrangian method that
solves SWM, a pricing scheme shown in Equation (5) can be
obtained when the first derivative of the Lagrangian equals to
zero. However, this pricing scheme does not discriminate the
dominant resource from other resource types for each user.
Therefore, we propose the max-min fair pricing scheme and
prove it leads to a weighted generalizedDRF (GW-DRF)with
a specific form of the weight function, whichwe nameADRF.

FIGURE 2. Flowchart in designing ADRF.

B. REVIEW: FORMAL DEFINITION OF DRF
DRF extends the max-min fairness from single resources case
to multi-resource cases. DRF achieves max-min fairness on
the dominant shares of each user. That is, the dominant shares
of all users are equalized in DRF. The formal definition of
DRF is given as follows.
Definition 1 (DRF): We call a multi-resource allocation

(x1, x2, . . . , xN ) feasible when the capacity constraint shown
in (1) is satisfied. Given the dominant share xi for each user i,
we say that a feasible allocation satisfies DRF when, for each

user i, any increase in the dominant share xi would cause a
decrease in the dominant share xi′ of some user i′ satisfying
xi′ ≤ xi.

C. GW-DRF AND ADRF
We introduce ADRF in order to overcome the obstacles in
SWM shown in Section III-C, which will facilitate our design
of the online scheduling algorithm C-ADRF as shown in
Section V. Moreover, ADRF is a specially designed case of
the Generalized Weighted DRF (GW-DRF). GW-DRF is a
generalization of the original DRF by assigning a generalized
weight function to users. The formal definition of GW-DRF
is given as follows.
Definition 2 (GW-DRF): Given some weight function

Wi(xi) for each user i, we say that a feasible allocation satisfies
GW-DRF when, for each user i, any increase in the dominant
share xi would cause a decrease in the dominant share xi′ of
some user i′ satisfying Wi′ (xi′ ) ≤ Wi(xi).
In essence, this generalization allows flexible assignment

of some individual utility value to xi for each user i in our
consideration of multi-resource fairness. Note that the origi-
nal definition of DRF is recovered with

Wi(xi) = xi, i ∈ A.

Just as it was suggested in (5), there exists a close rela-
tionship between the resource allocation policy in SWM and
the pricing scheme. Since the limit α → ∞ gives max-
min fairness on the dominant resource (i.e., DRF), we could
reasonably indicate that there also exists a particular pricing
scheme for GW-DRF as GW-DRF is a generalization of DRF.
Next we introduce a weighted max-min pricing scheme that
is closely related to the resource allocation in GW-DRF.

As it was shown in Section IV-A, the unit resource prices
are the same for all uses in the pricing scheme of (5).
This fails to discriminate the dominant resource from other
resource types for each user. Moreover, the conventional pric-
ing scheme based on (5) fails to support datacenter jobs non-
preemptively. Therefore, instead of (5), we propose to use
U ′(xi) = βiqi, where qi is a virtual unit price of the dominant
resource of user i and βi is a pre-determined constant. That
is, given βi, the virtual per-job price of user i is determined
only by the per-unit price qi of the dominant resource of user i.
Here βiqi can be viewed as an approximation to the right-hand
side of (5), where qi provides a rough representation of {hr } in
(5), with user-dependent adjustments based on its dominant
share, while βi aggregates the resource demand {dir } of user i.
We will discuss the optimal choices of βi in Section IV-C.
Now we formally define the pricing scheme for GW-DRF.

We consider a max-min fair pricing scheme, where the worst
treated users (i.e., the users who are charged the highest
weighted per-unit price on its dominant resource) is charged
as low a price as possible.
Definition 3 (Max-Min Fair Pricing): We identify a pric-

ing scheme q = (q1, q2, . . . , qN ) to be the per-unit price vec-
tor on the dominant resource of the N users. Since U ′(xi) =
βiqi, corresponding to (1), we say that an allocation under

97924 VOLUME 8, 2020



C. You et al.: Online Multi-Resource SWM for Non-Preemptive Jobs

price vector q is feasible when, for every resource type r ∈ R,
we have ∑

i∈A
U ′−1(βiqi)dir ≤ 1.

We call a price vector max-min fair when the corresponding
allocation is feasible, and when it is not possible to decrease
qi without losing feasibility or increasing qi′ of another user
i′ with qi′ ≥ qi

We next show how the weighted max-min pricing scheme
leads to a weighted DRF with specific form of the weight
function.
Proposition 4: Consider a dominant resource price vector

q = (q1, q2, . . . , qN ) and the corresponding dominant share
vector x = (x1, x2, . . . , xN ), i.e., for i = 1, 2, . . . ,N , we have
U ′(xi) = βiqi. Then the pricing scheme is max-min fair if and
only if the dominant resource share (x1, x2, . . . , xN ) satisfies
the GW-DRF with weight functions Wi(xi) =

βi
U ′(xi)

.
Proposition 4 is trivial as Wi(xi) = 1

qi
, which can be

obtained through U ′(xi) = βiqi and Wi(xi) =
βi

U ′(xi)
. It pro-

vides us one possible form of weight function in GW-DRF.
We refer to this specific form of GW-DRF as ADRF. The
formal definition of the ADRF allocation scheme as follows.
Definition 5 (ADRF): An allocation policy satisfies

Adaptive Dominant Resource fairness (ADRF) if the weight
function in the GW-DRF is Wi(xi) =

βi
U ′(xi)

. The dominant
share assigned to a user xi in ADRF is referred to as adaptive
dominant share.

D. OPTIMIZING βI
In the previous subsection, we develop a fairness criteria for
pricing schemes to connect the price-taking based service
with the concept of max-min fairness and then get one possi-
ble formulation of Wi(xi). However, it remains to determine
suitable values βi for all users, in order to maximize the social
welfare. We can decrease the gap between the social welfare
ADRF provides and the optimal social welfare through the
adjustment of the value of βi. In this way, the objective in
determining the value of βi is to minimize the gap.
As it was shown in [29], max-min fairness can be achieved

in SWM when α→∞. Therefore, an alternative expression
of the GW-DRF is shown as follows.

max
xi

lim
ξ→∞

∑
i∈A

W 1−ξ
i (xi)

1− ξ

s.t.
∑
i∈A

dirxi ≤ 1, ∀r ∈ R, (6)

where ξ → ∞. Here we use ξ instead of α to distinguish
it from the α of the utility function used in Wi(xi). The
Lagrangian of problem (6) is given by

L(x, p) = lim
xi→∞

∑
i∈A

W 1−ξ
i (xi)

1− ξ
−

∑
r∈R

pr (
∑
i∈A

dirxi − 1), (7)

where pr is the Lagrangian multiplier of (6) for the resource r
capacity constraint. Setting ∂L(x, p)/∂xi = 0 for each i gives

lim
xi→∞

W−ξi (xi)W ′i (xi) =
∑
r∈R

prdir . (8)

Further, the KKT conditions require that

pr (
∑
i∈A

xidir − 1) = 0 and pi ≥ 0. (9)

Denote the optimal result of (6) as x̂i. As long as x̂i is reached,
at least one of the resources in the system must be saturated.
We assume that only one of the resources r1 is saturated. This
is without loss of generality because of the heterogeneity of
resource capacities and user demands, rendering it unlikely to
have two or more simultaneously saturated resources. Thus,∑

i∈A
x̂idir1 = 1, (10)

and pr1 is the only non-zero Lagrange multiplier. Further-
more, considering (3), we have U ′(xi) = x−αi . Hence,
Wi(xi) = βixαi . At this point, (8) can be rewritten as

x̂i = lim
xi→∞

(
pr1dir1
αβ

1−ξ
i

)
1

−αξ+α−1 . (11)

Let (11) substitute for the x̂i in (10), we have

pr1 = lim
xi→∞

1∑
i∈A(

dir1
αβ

1−ξ
i

)
1

−αξ+α−1 dir1
, (12)

Substituting for the pr1 from (11), as ξ →∞, we obtain

x̂i =
1

β
1
α

i
∑

j∈A djr1β
−

1
α

j

. (13)

The same calculation can be used in problem (2), denote the
optimal solution as x∗i and the resource saturated as r2 in
problem (2) respectively, then we can obtain

x∗i =
1

d
1
α

ir2

∑
j∈A d

1− 1
α

jr2

. (14)

Denote GAP as the gap between the social welfare ADRF
provides and the optimal social welfare in SWM, then we
have

GAP =
∑
i∈A

U (x∗i )−
∑
i∈A

U (x̂i) (15a)

=

∑
i∈A

(d
1
α

ir2

∑
j∈A d

1− 1
α

jr2
)α−1

1− α

−

∑
i∈A

(β
1
α

i
∑

j∈A djr1β
−

1
α

j )α−1

1− α
(15b)

Although we hope that GAP could be as small as possible,
we can not determine the saturated resource types r1 and r2 in
ADRF and SWM. Moreover, the design of ADRF should not

VOLUME 8, 2020 97925



C. You et al.: Online Multi-Resource SWM for Non-Preemptive Jobs

depend on which type of resource is saturated. Denote dirmax

as the maximum demand of user i and dirmin as the minimum
demand of user i. We then analyze the upper bound of GAP
in the following three cases.

• When 0 < α < 1, we have

GAP ≤
∑
i∈A

(d
1
α

irmin

∑
j∈A d

1− 1
α

jrmax
)α−1

1− α

−

∑
i∈A

(β
1
α

i
∑

j∈A djrmaxβ
−

1
α

j )α−1

1− α
. (16)

• When α > 1, we have

GAP ≤
∑
i∈A

(d
1
α

irmin

∑
j∈A d

1− 1
α

jrmin
)α−1

1− α

−

∑
i∈A

(β
1
α

i
∑

j∈A djrmaxβ
−

1
α

j )α−1

1− α
. (17)

In the next step, we design ADRF according to the upper
bound of GAP shown in the right hand side of (16) and (17)
and hope to find a βi that can minimize the accordingly upper
bound.

Before we define the optimal value of βi for ADRF,
we firstly introduce the following lemma and its proof is
shown in the appendix due to space concern.
Lemma 6: Consider a positive semi-definite matrix Hn,

in which for each individual item we have hii ≥ 0, hij ≤ 0
(i 6= j). If for another matrix H ′n the following{

h′ii ≥ hii ≥ 0,
hij ≤ h′ij ≤ 0 (i 6= j),

(18)

holds, then H ′n is also a positive semi-definite matrix.
With this lemma, the following proposition can be proved.

The proof of the following proposition is also shown in the
appendix.
Proposition 7: ADRF can provide the smallest worst-case

GAP (i.e. the upper bound of GAP) if βi = dirmax , and the
upper bound of GAP can be minimized when 1 < α ≤ 2.
More specifically, the upper bound of GAP is

∑
i∈A

(d
1
α

irmin

∑
j∈A d

1− 1
α

jrmin
)α−1−(d

1
α

irmax

∑
j∈A d

1− 1
α

jrmax
)α−1

1− α
. (19)

Proposition 7 shows that GAP can be strictly upper
bounded when 1 < α ≤ 2, which indicates that ADRF
can provide near-optimal social welfare. So far, ADRF is still
an offline algorithm, the whole section defines ADRF and
computes its distance to the optimal solutions in SWM. Based
on ADRF, in the next section we will proceed to design its
online form.

V. CUMULATIVE ADAPTIVE DOMINANT
RESOURCE FAIRNESS
So far, our design of ADRF is still a static solution that
provides a near-optimal social welfare. As we mentioned in
the beginning, our goal has always been the non-preemptive
manner of online job scheduling. Therefore, ADRF only is
not enough.

Fortunately, there is a well known greedy online algorithm,
progressive filling [16], that can achieve DRF, which is basi-
cally the fundamental idea in designing the online version of
ADRF.

In this section, we start by considering a naive exten-
sion of progressive filling to implement ADRF online,
which is named Naive ADRF for convenience in later use
(Section V-A). However, Naive ADRF may lead to starva-
tions of certain upcoming users. Then we introduce our
approach, Cumulative ADRF (C-ADRF), that overcomes this
defect (Section V-B). Finally, we analyze the time complex-
ity of C-ADRF (Section V-C) and consider how well does
C-ADRF approximate ADRF (Section V-D).

A. INEFFICIENCIES OF THE NAIVE ADRF
Progressive filling is an idealized algorithm to achieve DRF
online by always assigning idle resources to the user with
the lowest current dominant share whose constraints the
resource satisfies [15]. Therefore, progressive filling allo-
cates resources in a greedy online manner, without preempt-
ing any jobs that are being processed [9].

Naive ADRF uses progressive filling directly by allocating
the idle resources to the user with the lowest current adaptive
dominant share whenever a resource frees up. Specifically,
when a job finishes its service on a server, its resources
free up. The scheduler will then determine if the freed up
resources can accommodate the next job from the user with
the least adaptive dominant share. If the idle resources can
not support a job from the poorest user, the Naive ADRF
scheduler will proceed to the next user with the second least
adaptive dominant share, and so on.

However, this policy has an obvious drawback — it might
starve some users waiting in line. Consider a datacenter with
only two users and one server with resources 〈9 CPUs, 18 GB
memory〉. Suppose that currently three jobs from user 1 are
being processed, each of which requires 〈3 CPUs, 1 GB
memory〉, and a newly joined user 2 requires 〈1 CPUs, 2 GB
memory〉. Only when two jobs from user 1 free up their
resources can one job from user 2 be scheduled. However,
if the jobs from user 1 finish one by one, every time a job
leaves, the Naive ADRF scheduler will continue to serve
user 1’s next job since the freed up resources can not accom-
modate one job from user 2. This leads to the starvation of
user 2 and its fair allocation will never be achieved.

B. C-ADRF
To address the user starvation problem in Naive ADRF,
we propose Cumulative ADRF (C-ADRF), that always

97926 VOLUME 8, 2020



C. You et al.: Online Multi-Resource SWM for Non-Preemptive Jobs

assigns freed up resources to the current poorest user, but
does not proceed to the current second poorest user if the
idle resources are not enough to support the next job from the
current poorest user. Instead, C-ADRF will cumulate freed
up resources until it is enough to serve the next job from the
current poorest user.

For the same example used in Section V-A, when user 2
arrives, it is the poorest user as its adaptive dominant resource
share is zero. At this point, if only one job from user
1 finishes, C-ADRF will stop and wait until the next job from
user 1 leaves and the cumulated freed up resources are enough
to support the first job from user 2.

Algorithm 1 C-ADRF Pseudo-Code
procedure JobCompletion(Hi)
W (xi)← W (xi − µi)
while data center is not full do
Let k be the user with the least adaptive dominant share;

if user k’s job, Hk , can be accommodated by the idle
resources then

Assign Hk to the data center;
Update W (xk )← W (xk + µk )

else
wait until another job Hj, j ∈ A, to be finished;
procedure JobCompletion (Hj)

end if
end while

The pseudo-code of C-ADRF is shown in Algorithm 1.
Every time a job of a certain user leaves the system,
Algorithm 1 is triggered. If there are enough idle resources
to support one queueing job Hk from the user with the least
adaptive dominant share k , C-ADRF schedules Hk next and
then updates the adaptive dominant share of user k . On the
contrary, there are not enough idle resources to accommodate
a queueing job from the poorest user k , C-ADRF will wait
until another job Hj from user j to leave and cumulate the
freed up resources. C-ADRF then repeats the above process
until the queueing job Hk from the poorest user k can be
scheduled using the cumulative idle resources.

C. TIME COMPLEXITY OF C-ADRF
Proposition 8: The time complexity of C-ADRF is

O(logN ), whereN is the number of users that currently exists
in the datacenter.

Proof: C-ADRF does not change the greedy nature of
progressive filling. It always assigns the idle resources to
the current poorest user. Therefore, the time complexities of
C-ADRF and progressive filling are the same. Progressive
filling needs to sort the dominant shares of all the N users
that currently exist in the datacenter and requires O(logN )
time complexity per job [15], [39]. This analysis also applies
to C-ADRF. C-ADRF needs to sort the adaptive dominant
shares of all the N users that currently exist in the datacener
and requires O(logN ) time complexity per job.

The time complexity of problem (2) solving by barrier
method is O(ϕN 3) [10], where ϕ is the number of iterations
relatedwith the number of constraintsM in SWM.Onlywhen
α → 1 can ϕ have a linear relationship with M . In other
cases, it is deeply hard to mathematically analyze the number
of iterations, but ϕ will be a number much larger than it
would be in the case when α → 1. Therefore, the time
complexity of C-ADRF is much smaller than the time com-
plexity in solving SWM directly. Considering the indivisible
and non-preemptive natures of users’ jobs and the decrease in
time complexity, C-ADRF trades some social welfare for the
improvement in implement efficiency.

D. C-ADRF CONVERGENCE PROPERTY
How well does C-ADRF approximate ADRF? Given that
C-ADRF returns an allocation vector with an integer number
of jobs to be scheduled, we modify ADRF in problem (6)
with an additional integer constraint. The following proposi-
tion shows that C-ADRF will eventually converge to ADRF
allocation with an integer constraint.
Proposition 9: Consider a datacenter with N users,

no matter when the ith user (i = 1, 2, . . . ,N ) arrives, the
C-ADRF algorithm will converge to the allocation of ADRF
with integer constraints.

Proof: Progress filling achieves max-min fairness, even
when there exit integer constraints on the allocation vector.
Therefore, given ADRF with integer constraints, the progres-
sive filling approach will make it keep serving the poorest
user with the least Wi(xi). On the other hand, in C-ADRF,
the cumulative feature guarantees that the poorest user is
always the first to be served. Therefore, the sequence of jobs
served by C-ADRF is exactly the same as the progressive
filling execution of ADRF with constraints. Thus C-ADRF
will eventually converge to ADRF allocation with integer
constraints.

VI. SIMULATIONS
We have evaluated the performance of ADRF and C-ADRF
separately in Matlab via extensive simulations driven by
cluster-usage traces from Google [40] and Facebook [7].
The total number of lines in our Matlab files exceeds 3500.
The demands of each user fit our model with two resources.
We start with the ADRF simulation to testify its effective-
ness in providing near-optimal social welfare (Section VI-A).
We then evaluate the performance of C-ADRF, comparing
it with the existing fair sharing policies in large clusters.
(Section VI-B).

A. ADRF PERFORMANCE
We first compare the social welfare ADRF provides with the
optimal social welfare in SWM.

1) SETUP
Every time we pick out 10 to 80 users randomly from the
traces of Google and Facebook, respectively. We extract the
computing demand information — the required amount of

VOLUME 8, 2020 97927



C. You et al.: Online Multi-Resource SWM for Non-Preemptive Jobs

resources — and use it as the demand input of the two algo-
rithms for evaluation. We repeat this process for 100 times to
obtain the average social welfare of ADRF and SWM and
the worst-case estimated average social welfare of ADRF
(i.e., the optimal social welfare minus the upper bound of
the gap).

2) RESULTS AND ANALYSIS
Fig. 3 shows the average social welfare of ADRF, SWM, and
the worst-case estimated ADRF when α → 1 in the utility
function (i.e., U (xi) = log xi). We observe that the actual
average social welfare ADRF provides approximates to the
optimal social welfare very well. Furthermore, the average
ratio between the actual gap and the optimal social welfare
is 2.19% in Google traces and 1.88% in Facebook traces,
the average ratio between the upper bound and the optimal
social welfare is 37.71% in Google traces and 32.05% in
Facebook traces. This indicates ADRF provides social wel-
fare fairly close the optimal welfare, but the upper bound of
the gap can only provide a coarse estimation of the gap.

FIGURE 3. Average social welfare of ADRF and SWM when α → 1.

As the upper bound of the gap between the social welfare
of ADRF and SWM can be minimized when 1 < α ≤ 2
using the α-fair utility function, we pick several values from
1 to 2 in Table 2 to check the social welfare performance of
ADRF using different utility functions. From Table 2 we can
see that ADRF behaves pretty well in providing social welfare
for various values of α.

TABLE 2. Average social welfare with different α in SWM and ADRF.

B. C-ADRF PERFORMANCE
1) SETUP
In order to emulate the performance of C-ADRF, we com-
pare C-ADRF with FIFO and five multi-resource fair online

sharing policies based on max-min fairness: naive ADRF,
weighted Max-Min Fairness (WMMF) [41] w.r.t. CPU share
(hereafter CPU), WMMF w.r.t. memory share (hereafter
Mem), generalized WMMF w.r.t. CPU share (hereafter
G-CPU), WMMF w.r.t. memory share (hereafter Mem) and
generalized WMMF w.r.t. memory share (hereafter G-Mem).
WMMF is one of the most popular policies proposed for
fair sharing in single resource allocation and can be easily
extended to the multi-resource environment with respect to
each type of resources. WMMFw.r.t. CPU andmemory share
are two simulators using constant weight 1 for each user,
while generalized WMMF w.r.t. CPU and memory share are
two simulators using weight function Wi(xi) for each user.
Meanwhile, for the input workloads, we have sampled the
jobs submitted within a 1-hour interval in the Google and
Facebook traces.

In order to evaluate the social welfare performance of
C-ADRF, we measure the differences in allocation vectors
between C-ADRF and SWM rather than the social welfare
directly. This is because C-ADRF is a non-preemptive algo-
rithm, the newly arrival user may have to wait in the queue to
be scheduled and its instantaneous adaptive dominant share
will be equal to zero. This will lead to a negative infinity
utility when U (xi) = log xi.
We measure the CDF of the Root Mean Square Error

(RMSE) between the allocation vectors of SWM and
one of the online scheduling algorithms (i.e., C-ADRF,
Naive-ADRF, CPU, G-CPU, Mem and G-Mem). That
is, if an online scheduler obtains an allocation vector
〈x1, x2, . . . , xN 〉 at a particular time t , and SWM pro-
vides 〈x̂1, x̂2, . . . , x̂N 〉 for the same workload, the RSME
is
√

1
N ((

x1−x̂1
x̂1

)2 + · · · + ( xN−x̂Nx̂N
)2). We sample the system

status every 700 seconds to record the allocation vector
〈x1, x2, . . . , xN 〉, users that are currently existing in the
system and their resource demands, correspondingly. The
optimal allocation vector can then be computed using this
information in each sampled time slot.

2) RESULTS AND ANALYSIS
Fig. 4 and Fig. 5 show the CDF of RMSE using Google
and Facebook traces with two different values of α in the
utility function. The basic observation is that the average
RMSE of C-ADRF is around 3% using Google traces and
2% using Facebook traces. That is, C-ADRF differs from the
optimal solutions by only 3% in the Google cluster and 2%
in the Facebook cluster! This indicates that C-ADRF behaves
perfectly in providing optimal social welfare.

Not only that, we observe that the fair scheduling algo-
rithms outperform FIFO unanimously, improving the social
welfare of about 85% of the users by up to 10× in Google
traces and about 95% of the users by up to 15× in Face-
book traces. Such a significant social welfare gain derives
from the design of max-min fairness to maximize social
welfare. On the other hand, we note that the fair schedul-
ing algorithms except C-ADRF experience similar social

97928 VOLUME 8, 2020



C. You et al.: Online Multi-Resource SWM for Non-Preemptive Jobs

FIGURE 4. Social welfare performance of C-ADRF vs. other 6 online algorithms when α → 1.

FIGURE 5. Social welfare performance of C-ADRF vs. other 6 online algorithms when α = 1.5.

welfare performance, although G-CPU and G-Mem perform
slightly better than the CPU and Mem correspondingly. This
is because the weight function is designed to approximate the
optimal social welfare. To our surprise, Naive ADRF behaves
no better than some of the WMMF algorithms in which
max-min fairness is performed only on a fixed resource.
We attribute this phenomenon to the possibility of users to
suffer starvation. Due to the heterogeneity of user demands
for multiple resources, in Naive ADRF, users are easier to
exhibit starvation. This is because only when its demand on
each of the resource types is smaller than the available capac-
ity of the corresponding resource type in the cluster, then its
job can be scheduled. However, WMMF algorithms concern
only one single resource, as long as a user’s demand on this
particular resource is smaller than the available capacity of
this resource type, this user’s next job can be scheduled.

Therefore, users in WMMF are much less possible to be
starved.

Most importantly, we can see that C-ADRF outperforms
all the other algorithms significantly in providing social wel-
fare. Since there is no starvation in C-ADRF, it can better
approximate the behavior of ADRF, which is approved in
Section VI-A to provide social welfare fairly close to the
optimal solution.

We next evaluate the job queueing delay, defined for each
job as the wait time from job submission to scheduling, using
different algorithms. We compare the job queueing delay
performance of C-ADRF with other schedulers to see if the
nice social welfare gain of C-ADRF is achieved at the expense
of significant job queueing delay.

Fig. 6 and Fig. 7 show the CDF of job queueing delay.
We note that jobs experienced similar queueing delays across

VOLUME 8, 2020 97929



C. You et al.: Online Multi-Resource SWM for Non-Preemptive Jobs

FIGURE 6. CDF of job queueing delay of C-ADRF vs. other 6 algorithms when α → 1.

FIGURE 7. CDF of job queueing delay of C-ADRF vs. other 6 algorithms when α = 1.5.

all the seven online scheduling algorithms in separate traces.
As we expected, the job queueing delay of C-ADRF performs
worse than the others in most cases. We attribute this to the
cumulative nature of C-ADRF while scheduling. C-ADRF
has to wait until the cumulative idle resource can support
one job from the poorest user. This will lead to a loss on
the performance of job queueing delay of C-ADRF. However,
this is a slight loss. All results indicate that the near-optimal
social welfare performance of C-ADRF is achieved at the
expense of only a slight increase in job queueing delay.

VII. CONCLUSION
We proposed ADRF, a multi-resource fair allocation pol-
icy that provided near-optimal social welfare. ADRF was
a special case of GW-DRF. We proved, both analytically
and experimentally, that when 1 < α ≤ 2 in the α-fair

utility function, ADRF provided near-optimal social welfare
and the upper bound of the gap between the social welfare
ADRF provided and the optimal social welfare could be
minimized. We further proposed C-ADRF, a non-preemptive
job scheduling algorithm to implement ADRF online based
on the progressive filling method. Whenever a resource freed
up, C-ADRF assigned it to the user i with the lowest cur-
rent adaptive dominant share. If the idle resources could
not satisfy a job of user i, C-ADRF would wait until the
cumulative freed up resources could accommodate one job
of user i. Through extensive simulation studies, we showed
that C-ADRF differed from the optimal solutions in SWM
by only 3% using Google traces and 2% using Facebook
traces, providing near-optimal social welfare dynamically for
non-preemptive datacenter jobs. And this nice social welfare
performance was achieved at the expense of only a slight

97930 VOLUME 8, 2020



C. You et al.: Online Multi-Resource SWM for Non-Preemptive Jobs

increase in job queueing delay. For future research direc-
tions, we believe C-ADRF is applicable in many other multi-
resource contexts for non-preemptive scheduling, such as
VM scheduling in hypervisors.

APPENDIX A
PROOF OF LEMMA 6

Proof: Since Hn is a positive semi-definite matrix,
according to Cholesky Decomposition, there exists a lower
triangular matrix Ln such that Hn = LnLTn . Denote lij as the
individual item of Ln on the i-th row and j-th column, where
i, j = 1, 2, . . . , n, then we have

lii =
√
hii −

∑
t=1

l2it ,

lij =
hij −

∑j−1
t=1 lit ljt
ljj

, (i > j),

(20)

where lii ≥ 0. If we denote Hn as following

Hn =
[
h11 H12
H21 H22

]
, (21)

where H12 is a row vector, H21 is a column vector and
H22 is a (n − 1)-dimensional square matrix. Then another
expression of Cholesky Decomposition of Hn can be denoted
as following

l11 =
√
h11 (22a)

L21 =
1
l11
H21 (22b)

L22LT22 = H22 − L21LT21, (22c)

According to (18), if for another matrix H ′n we have

h′11 ≥ h11 ≥ 0, then denote l ′11 to be equal to
√
h′11,

(18) and (22a) together yield

l ′11 =
√
h′11 ≥

√
h11 = l11. (23)

At this point, if we let L ′21 =
1
l′11
H ′21, since l

′

11 ≥ l11 and

0 ≥ h′i1 ≥ hi1 for i = 1, 2, . . . , n, we have

0 ≥ L ′21 =
1
l ′11
H ′21 ≥

1
l11
H21 = L21. (24)

Here, the comparison between two matrices implies the com-
parison between each pair of elements at the same location of
the two matrices. That is, H ′ ≥ H indicates that each item h′ij
in H ′ is larger than or equal to its corresponding element hij
in H (i.e., h′ij ≥ hij). Next, we denote

L ′22L
′T
22 = H ′22 − L

′

21L
′T
21 . (25)

It is easy to verify that L ′21L
′T
21 is a diagonal matrix, and

0 ≤ L ′21L
′T
21 ≤ L21L

T
21. (26)

Thus, we have

H ′22 − L
′

21L
′T
21 ≥ H22 − L21LT21. (27)

(22c),(25) and (27) together yield

L ′22L
′T
22 ≥ L22L

T
22 (28)

Therefore, there exists a lower triangular matrix L ′n that can
be expressed as following

l ′11 =
√
h′11 (29a)

L ′21 =
1
l ′11
H ′21 (29b)

L ′22L
′T
22 = H ′22 − L

′

21L
′T
21, (29c)

which is a similar expression of Ln that is shown in Equa-
tion (22).

Noticing that L22LT22 is also a Cholesky Decomposi-
tion, and the matrix that being decomposed is the (n − 1)
dimensional matrix of the lower right corner of matrix Hn.
Therefore, H22 can be further decomposed using Cholesky
Decomposition. According to the relationship shown in
(18), by repeating the process above, we obtain a lower
triangular matrix L ′n in which l ′ii can be expressed as
following 

l ′ii =

√√√√h′ii −
i−1∑
t=1

l
′2
it ,

l ′ij =
h′ij −

∑j−1
t=1 l

′
it l
′
jt

l ′jj
, (i > j),

(30)

That is, H ′n = L ′nL
′T
n . Since all the diagonal elements of L ′n

is larger than or equal to 0, it is easy to indicate that det(H ′) =
det(L ′n) det(L

′T
n ) ≥ 0. Therefore, H ′n is also a positive semi-

definite matrix.

APPENDIX B
PROOF OF PROPOSITION 7

Proof: According to the results shown in (16) and (17),
our problem becomes to find the optimal solution of βi in
order to minimize the right hand sides of the two formulas
accordingly. That is, regardless of the constant terms, we seek
to find the optimal βi with constraints βi > 0 such that

min
{βi}

f (βi) =
∑
i∈A

(β
1
α

i
∑

j∈A djrmaxβ
−

1
α

j )α−1

α − 1
. (31)

Now we show that the sum objective in (31), which we
denote as f (βi) (i ∈ A) is convex with respect to βi. We prove
the convexity of f (βi) by showing the convexity of each term,

(β
1
α

i
∑

j∈A djrmaxβ
−

1
α

j )α−1/(α − 1), for i ∈ A.

We denote HN as the Hessian matrix of each term of f (βi).
We will show by induction that HN is positive semi-definite
for all N , which can indicate that (31) is convex. First, for
N = 1, it is easy to see that the objective of (31) is a constant
and hence also convex. Next, for some givenN = n−1 users,
suppose that Hn−1 is positive semi-definite. Denote by h(n−1)ii

VOLUME 8, 2020 97931



C. You et al.: Online Multi-Resource SWM for Non-Preemptive Jobs

its ith diagonal element. Then we have

h(n−1)ii =
1
α2

[−β
−

1
α
−1

i Bα−1n−1

+(3− α)dirmaxβ
−

2
α
−1

i Bα−2n−1

+(α − 2)d2irmax
β
−

3
α
−1

i Bα−3n−1 ], (32)

where Bn−1 =
∑n−1

i=1 dirmaxβ
−

1
α

i . The positive semi-
definiteness of Hn−1 indicates h

n−1
ii ≥ 0. The other element

h(n−1)ij in Hn−1 where i 6= j can be expressed as

h(n−1)ij =
1
α2
djrmaxβ

−
1
α
−1

j [(1− α)β
−

1
α

i Bα−2n−1

+(α − 2)dirmaxβ
−

2
α

i Bα−3n−1 ]. (33)

Now we add one more user to the above n − 1 users and
consider the resultant Hn. We hope that there exits a lower
triangular matrix Ln such thatHn = LnLTn , where its diagonal
element l(n)ii ≥ 0, i = 1, 2, . . . , n.

We firstly construct a n-dimensional positive semi-definite
matrix H̃n by adding one column and one row to Hn−1,
in which the (n, n) entry h̃(n)nn is a positive number that is
smaller than or equal to h(n)nn , while the rest newly added
entries are zero. That is, in H̃n we have

h̃(n)ij = h(n−1)ij , i, j = 1, . . . , n− 1.

h̃(n)nn ≤ h
(n)
nn .

h̃(n)in = 0, i = 1, . . . , n.

h̃(n)nj = 0, j = 1, . . . , n.

(34)

Thus, H ′n is obviously a positive semi-definite matrix. Then,
according to Lemma 6, we know that as long as{

h(n)ii ≥ h̃
(n)
ii ≥ 0,

h̃(n)ij ≤ h
(n)
ij ≤ 0,

(35)

holds, Hn is also positive semi-definite. We notice that com-
pared with h(n−1)ii and h(n−1)ij , the only element that would be

changed in h(n)ii and h(n)ij is Bn (i.e., Bn replaces Bn−1). Since
dirmax and βi are both positive, we have

Bn−1 < Bn (36)

Therefore, when h(n)ii ≥ h̃
(n)
ii , as we already have h

(n)
nn ≥ h̃

(n)
nn ,

what we need to prove is h(n)ii ≥ h(n−1)ii = h̃(n)ii (i = 1, . . . ,
n− 1). Therefore, we have

1
α2

[−β
−

1
α
−1

i Bα−1n−1 + (3− α)dirmaxβ
−

2
α
−1

i Bα−2n−1

+(α − 2)d2irmax
β
−

3
α
−1

i Bα−3n−1 ]

≥
1
α2

[−β
−

1
α
−1

i Bα−1n + (3− α)dirmaxβ
−

2
α
−1

i Bα−2n

+(α − 2)d2irmax
β
−

3
α
−1

i Bα−3n ], (37)

After eliminating − 1
α2
β
−

3
α
−1

i dirmax on the both sides of (37),
we have

Bα−3n (Tn + α − 2)(Tn − 1)

≤ Bα−3n−1 (Tn−1 + α − 2)(Tn−1 − 1), (38)

where

Tn = d−1irmax
β

1
α

i Bn

= d−1irmax
β

1
α

i

n∑
i=1

dirmaxβ
−

1
α

i

= 1+
∑

j∈A,j6=i
djrmaxβ

−
1
α

j

> 1. (39)

Furthermore, since Bn ≥ Bn−1 (see (36)), we have Tn ≥
Tn−1. Therefore, if α > 1 we always have{

Tn + α − 2 ≥ Tn−1 + α − 2 ≥ 0,
Tn − 1 ≥ Tn−1 − 1 ≥ 0.

(40)

This indicates

(Tn + α − 2)(Tn − 1) ≥ (Tn−1 + α − 2)(Tn−1 − 1) (41)

Combine (41) with (38), we have

Bα−3n ≤ Bα−3n−1 . (42)

Since Bn > Bn−1, we indicate that

α − 3 ≤ 0. (43)

To sum up, when 1 < α ≤ 3, h(n)ii ≥ h(n−1)ii can always be
satisfied.

Next, when h̃(n)ij ≤ h(n)ij ≤ 0, as we already have h̃(n)in = 0

(i = 1, . . . , n) and h̃(n)nj = 0 (j = 1, . . . , n), what we need to

prove is that h(n−1)ij = h̃(n)ij ≤ h(n)ij (i, j = 1, . . . , n − 1 and
i 6= j). According to (33), it is obvious to notice that if

1 < α ≤ 2, (44)

we will always have {
1− α < 0
α − 2 ≤ 0.

(45)

and B
α−2
n−1 ≥ B

α−2
n

Bα−3n−1 ≥ B
α−3
n

(46)

According to the expression of h(n−1)ij shown in (33), (35)

guarantees that h(n−1)ij and h(n−1)ij are always negative. Mean-

while, (46) guarantees that h(n−1)ij ≤ h(n)ij . Therefore, when

1 < α ≤ 2, we always have h(n−1)ij ≤ h(n)ij ≤ 0.

To sum up, (43) and (44) together yield

1 < α ≤ 2 (47)

97932 VOLUME 8, 2020



C. You et al.: Online Multi-Resource SWM for Non-Preemptive Jobs

At this point, according to Lemma 6, Hn is also a positive
semi-definite matrix. Therefore, when 1 < α ≤ 2, each term
of the objective function in (31) is convex. Thus the objective
function in (31) is convex.

Now we are able to compute the stationary points of the
objective function in (31). When 1 < α ≤ 2, the first
derivative of the objective function in (31) is

∂f (βi)
∂βi

= (β
1
α

1 BN )
α−2[−

1
α
β

1
α

1 dirmaxβ
−

1
α
−1

i ]

+ . . .+
1
α
(β

1
α

i BN )
α−2[β

1
α
−1

i BN − dirmaxβ
−1
i ]

+ . . .+ (β
1
α

N BN )
α−2[−

1
α
β

1
α

N dirmaxβ
−

1
α
−1

i ] (48a)

= Bα−2N (β
−

1
α

i BN − dirmaxβ
−1− 1

α

i

∑
j∈A

β
1− 1

α

j ). (48b)

Let ∂f (βi)
∂βi

to be zero, then we have the stationary point of f (βi)
is βi = dirmax . This is because: (1) the first term of (48b)
is always larger than zero; (2) when βi = dirmax , we have

BN =
∑

j∈A β
1− 1

α

j and β
−

1
α

i = dirmaxβ
−1− 1

α

i , thus the second
term of (48b) is equal to zero.

According to the concavity of the objective functions in
the two problems, βi = dirmax is also the optimal point that
minimize the value of the upper bound of the GAP concluded
in Proposition 7.

REFERENCES
[1] I. Menache, A. Ozdaglar, and N. Shimkin, ‘‘Socially optimal pricing of

cloud computing resources,’’ in Proc. 5th Int. ICST Conf. Perform. Eval.
Methodol. Tools, 2011, pp. 322–331.

[2] L. Zhang, Z. Li, and C.Wu, ‘‘Dynamic resource provisioning in cloud com-
puting: A randomized auction approach,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2014, pp. 433–441.

[3] H. Li, C. Wu, Z. Li, and F. C. M. Lau, ‘‘Virtual machine trading in a
federation of clouds: Individual profit and social welfare maximization,’’
IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1827–1840, Jun. 2016.

[4] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. C. M. Lau, ‘‘Online auc-
tions in IaaS clouds: Welfare and profit maximization with server costs,’’
IEEE/ACM Trans. Netw., vol. 25, no. 2, pp. 1034–1047, Apr. 2017.

[5] W. Shi, C. Wu, and Z. Li, ‘‘An online auction mechanism for dynamic vir-
tual cluster provisioning in geo-distributed clouds,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 3, pp. 677–688, Mar. 2017.

[6] J. Li, Y. Zhu, J. Yu, C. Long, G. Xue, and S. Qian, ‘‘Online auction for
IaaS clouds: Towards elastic user demands and weighted heterogeneous
VMs,’’ IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 9, pp. 2075–2089,
Sep. 2018.

[7] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, ‘‘Delay scheduling: A simple technique for achieving local-
ity and fairness in cluster scheduling,’’ in Proc. Eur. Conf. Comput.
Syst. (EuroSys), 2010, pp. 265–278.

[8] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. H. Katz, S. Shenker, and I. Stoica, ‘‘Mesos: A platform for fine-grained
resource sharing in the data center,’’ in Proc. USENIX Symp. Netw. Syst.
Design Implement. (NSDI), 2011, p. 22.

[9] A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, ‘‘Choosy: Max-min fair
sharing for datacenter jobs with constraints,’’ in Proc. 8th ACM Eur. Conf.
Comput. Syst. EuroSys, 2013, pp. 365–378.

[10] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[11] H. Xu and B. Li, ‘‘Dynamic cloud pricing for revenue maximization,’’
IEEE Trans. Cloud Comput., vol. 1, no. 2, pp. 158–171, Jul./Dec. 2013.

[12] T. Hu, Y. Zhang, and M. Cheng, ‘‘Pricing strategy of car-hailing platform
with maximizing social welfare,’’ in Proc. 6th Int. Conf. Frontiers Ind.
Eng. (ICFIE), Sep. 2019, pp. 33–39.

[13] N. Chen and G. Gallego, ‘‘Welfare analysis of dynamic pricing,’’Manage.
Sci., vol. 65, no. 1, pp. 139–151, Jan. 2019.

[14] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang, ‘‘How to
bid the cloud,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 45, no. 4,
pp. 71–84, Sep. 2015.

[15] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, ‘‘Dominant resource fairness: Fair allocation of multiple resource
types,’’ in Proc. USENIX Symp. Netw. Syst. Design Implement. (NSDI),
vol. 11, 2011, p. 24.

[16] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data Networks, vol. 2.
Upper Saddle River, NJ, USA: Prentice-Hall, 1992.

[17] A. N. Toosi, K. Vanmechelen, K. Ramamohanarao, and R. Buyya, ‘‘Rev-
enue maximization with optimal capacity control in infrastructure as
a service cloud markets,’’ IEEE Trans. Cloud Comput., vol. 3, no. 3,
pp. 261–274, Jul. 2015.

[18] M. Hadji and D. Zeghlache, ‘‘Mathematical programming approach for
revenue maximization in cloud federations,’’ IEEE Trans. Cloud Comput.,
vol. 5, no. 1, pp. 99–111, Jan. 2017.

[19] M.Wardat, M. Al-Ayyoub, Y. Jararweh, and A. A. Khreishah, ‘‘Cloud data
centers revenue maximization using server consolidation: Modeling and
evaluation,’’ in Proc. IEEE Conf. Comput. Commun. Workshops (INFO-
COM WKSHPS), Apr. 2018, pp. 172–177.

[20] W. You, L. Jiao, J. Li, and R. Zhou, ‘‘Scheduling DDOS cloud scrubbing
in ISP networks via randomized online auctions,’’ in Proc. IEEE Int. Conf.
Comput. Commun. (INFOCOM), 2020.

[21] X. Yi, F. Liu, Z. Li, and H. Jin, ‘‘Flexible instance: Meeting deadlines of
delay tolerant jobs in the cloud with dynamic pricing,’’ in Proc. IEEE 36th
Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2016, pp. 415–424.

[22] H. Zhang, H. Jiang, B. Li, F. Liu, A. V. Vasilakos, and J. Liu, ‘‘A framework
for truthful online auctions in cloud computing with heterogeneous user
demands,’’ IEEE Trans. Comput., vol. 65, no. 3, pp. 805–818, Mar. 2016.

[23] Y. Jiao, P. Wang, D. Niyato, and K. Suankaewmanee, ‘‘Auction
mechanisms in cloud/fog computing resource allocation for public
blockchain networks,’’ IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 9,
pp. 1975–1989, Sep. 2019.

[24] Q. Li, C. Huang, H. Bao, B. Fu, and X. Jia, ‘‘A game-based combinatorial
double auction model for cloud resource allocation,’’ in Proc. 28th Int.
Conf. Comput. Commun. Netw. (ICCCN), Jul. 2019, pp. 1–8.

[25] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data process-
ing on large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113,
2008.

[26] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, ‘‘Pregel: A system for large-scale graph processing,’’
in Proc. Int. Conf. Manage. Data SIGMOD, 2010, pp. 135–146.

[27] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, ‘‘Dryad: Distributed
data-parallel programs from sequential building blocks,’’ in Proc. ACM
Symp. Oper. Syst. Princ. (SIGOPS), 2007, vol. 41, no. 3, pp. 59–72.

[28] V. K. Vavilapalli, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, E. Baldeschwieler, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, and H. Shah, ‘‘Apache Hadoop
YARN: Yet another resource negotiator,’’ in Proc. 4th Annu. Symp. Cloud
Comput. (SOCC), 2013, p. 5.

[29] R. Srikant and L. Ying, Communication Networks: An Optimization, Con-
trol, and Stochastic Networks Perspective. Cambridge, U.K.: Cambridge
Univ. Press, 2013.

[30] D. C. Parkes, A. D. Procaccia, and N. Shah, ‘‘Beyond dominant resource
fairness: Extensions, limitations, and indivisibilities,’’ ACM Trans. Econ.
Comput., vol. 3, no. 1, pp. 1–22, 2015.

[31] W. Wang, B. Li, and B. Liang, ‘‘Dominant resource fairness in cloud
computing systems with heterogeneous servers,’’ in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), Apr. 2014, pp. 583–591.

[32] A. A. Bhattacharya, D. Culler, E. Friedman, A. Ghodsi, S. Shenker, and
I. Stoica, ‘‘Hierarchical scheduling for diverse datacenter workloads,’’ in
Proc. 4th Annu. Symp. Cloud Comput. (SOCC), 2013, pp. 1–15.

[33] W. Wang, B. Li, B. Liang, and J. Li, ‘‘Multi-resource fair sharing for
datacenter jobs with placement constraints,’’ in Proc. Int. Conf. High
Perform. Comput., Netw., Storage Anal. (SC), Nov. 2016, p. 86.

[34] P. Marbach, ‘‘Priority service and max-min fairness,’’ in Proc. 21st
Annu. Joint Conf. IEEE Comput. Commun. Societies, vol. 1, Jun. 2002,
pp. 266–275.

[35] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang, ‘‘Multiresource allocation:
Fairness-efficiency tradeoffs in a unifying framework,’’ IEEE/ACM Trans.
Netw., vol. 21, no. 6, pp. 1785–1798, Dec. 2013.

VOLUME 8, 2020 97933



C. You et al.: Online Multi-Resource SWM for Non-Preemptive Jobs

[36] G. Zhang, R. Lu, and W. Wu, ‘‘Multi-resource fair allocation for cloud
federation,’’ in Proc. IEEE 21st Int. Conf. High Perform. Comput. Com-
mun., IEEE 17th Int. Conf. Smart City, IEEE 5th Int. Conf. Data Sci. Syst.
(HPCC/SmartCity/DSS), Aug. 2019, pp. 2189–2194.

[37] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica, ‘‘Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,’’ in Proc.
USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2012, pp. 15–28.

[38] M. Isard, V. Prabhakaran, J. Currey, U.Wieder, K. Talwar, andA.Goldberg,
‘‘Quincy: Fair scheduling for distributed computing clusters,’’ in Proc.
ACM SIGOPS 22nd Symp. Oper. Syst. Princ. (SOSP), 2009, pp. 261–276.

[39] W. Wang, B. Liang, and B. Li, ‘‘Low complexity multi-resource
fair queueing with bounded delay,’’ in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Apr. 2014, pp. 1914–1922.

[40] C. Reiss, J. Wilkes, and J. L. Hellerstein, ‘‘Google cluster-usage traces:
Format+ schema,’’ Google Inc., Menlo Park, CA, USA, White Paper,
2011, pp. 1–14.

[41] S. Keshav, An Engineering Approach to Computer Networking: ATM
Networks, the Internet, and the TelephoneNetwork, vol. 116. Reading,MA,
USA: Addison-Wesley, 1997.

CHAOQUN YOU (Member, IEEE) received the
B.S. degree in communication engineering from
the University of Electronic Science and Tech-
nology of China (UESTC), in July 2013, where
she is currently pursuing the Ph.D. degree. From
October 2015 to September 2017, she was an Aca-
demic Guest with the Department of Electronic
Computer Engineering, University of Toronto. Her
research interests include data center networks
(DCN), network function virtualization (NFV),
and distributed machine learning (DML).

CHENG REN received the B.S., M.S., and Ph.D.
degrees from the University of Electronic Science
and Technology of China (UESTC), Chengdu,
China, in 2006. She is currently a Lecturer with
Southwest Petroleum University. Her research
interests include software-defined networking and
network resource allocation.

LEMIN LI received the B.S. degree in electrical
engineering from Shanghai Jiao Tong University
(SJTU), in 1952. Then, he was with the Depart-
ment of Electrical Communications, SJTU, until
1956. Since 1956, he has been with the Chengdu
Institute of Radio Engineering (now UESTC).
From August 1980 to August 1982, he was a Vis-
iting Scholar with The University of California at
San Diego (UCSD). His current research interest
includes communication networks.

97934 VOLUME 8, 2020


	INTRODUCTION
	RELATED WORK
	DYNAMIC PROVISIONING FOR SOCIAL WELFARE MAXIMIZATION
	MAX-MIN FAIR ALLOCATION

	SYSTEM MODEL
	MULTI-RESOURCE JOBS AND DOMINANT SHARE
	OPTIMIZATION OBJECTIVE
	INEFFICIENCY IN CONVENTIONAL SOLUTIONS
	ONLINE JOB ARRIVAL AND DEPARTURE

	ADAPTIVE DOMINANT RESOURCE FAIRNESS
	OVERVIEW
	REVIEW: FORMAL DEFINITION OF DRF
	GW-DRF AND ADRF
	OPTIMIZING I

	CUMULATIVE ADAPTIVE DOMINANT RESOURCE FAIRNESS
	INEFFICIENCIES OF THE NAIVE ADRF
	C-ADRF
	TIME COMPLEXITY OF C-ADRF
	C-ADRF CONVERGENCE PROPERTY

	SIMULATIONS
	ADRF PERFORMANCE
	SETUP
	RESULTS AND ANALYSIS

	C-ADRF PERFORMANCE
	SETUP
	RESULTS AND ANALYSIS


	CONCLUSION
	PROOF OF LEMMA 6
	PROOF OF PROPOSITION 7
	REFERENCES
	Biographies
	CHAOQUN YOU
	CHENG REN
	LEMIN LI



